
Resource Allocation Method using Scheduling 
methods for Parallel Data Processing in Cloud 

 
Sowmya Koneru1, V N Rajesh Uddandi1, Satheesh Kavuri2 

 
1Depatment of Computer Science & Engineering, 

Sri Sunflower College of Engineering & Technology,  
Lankapally, Krishna Dist, 

2Depatment of Computer Science & Engineering, 
Dhanekula Institute of Engineering & Technology, 

Vijayawada, Krishna Dist, 
 

Abstract- Infrastructure as a Service (IaaS) clouds have emerged as a 
promising new platform for massively parallel data processing. By 
eliminating the need for large upfront capital expenses, operators of 
IaaS clouds offer their customers the unprecedented possibility to 
acquire access to a highly scalable pool of computing resources on a 
short-term basis and enable them to execute data analysis applications 
at a scale which has been traditionally reserved to large Internet 
companies and research facilities. However, despite the growing 
popularity of these kinds of distributed applications, the current parallel 
data processing frameworks, which support the creation and execution 
of large-scale data analysis jobs, still stem from the era of dedicated, 
static compute clusters and have disregarded the particular 
characteristics of IaaS platforms so far.  Nephele is the first data 
processing framework to explicitly exploit the dynamic resource 
allocation offered by today’s IaaS clouds for both, task scheduling and 
execution. Particular tasks of processing a job can be assigned to 
different types of virtual machines which are automatically instantiated 
and terminated during the job execution. However, the current 
algorithms does not consider the resource overload or underutilization 
during the job execution.  In this paper, we have focused on increasing 
the efficacy of the scheduling algorithm for the real time Cloud 
Computing services.  Our Algorithm utilizes the Turnaround time 
Utility efficiently by differentiating it into a gain function and a loss 
function for a single task. The algorithm also assigns high priority for 
task of early completion and less priority for abortions issues of real 
time tasks. The algorithm has been implemented on RR  method. The 
out performs existing utility based scheduling algorithms and also 
compare its performance. 
Keywords: Cloud computing, task scheduling, resource utilization, High-
Throughput Computing. 
 

I. INTRODUCTION 
Cloud computing refers to the idea of delivering dynamically-
scalable IT resources like computing power, storage or higher 
level platforms and services on demand to external customers 
over the Internet. The resources are rapidly provisioned and 
released with minimal management effort or service provider 
interaction, allowing the cloud customer to quickly grow or 
shrink the rented infrastructure according to his requirements. 
The Cloud computing has the potential to dramatically 
change the landscape of the current IT industry (Armbrust et 
al., 2009; Goldberg, 1989) For companies that only have to 
process large amounts of data occasionally running their own 
data center is obviously not an option. Instead, Cloud 
computing has emerged as a promising approach to rent a 
large IT infrastructure on a short-term pay-per-usage basis. 
Operators of so-called IaaS clouds,  let their customers 
allocate, access and control a set of Virtual Machines (VMs) 
which run inside their data centers and only charge them for 

the period of time the machines are allocated. The VMs are 
typically offered in different types, each type with its own 
characteristics (number of CPU cores, amount of main 
memory) and cost. Since the VM abstraction of IaaS clouds 
fits the architectural paradigm assumed by the data 
processing frameworks described above, projects like 
Hadoop The Apache Software Foundation, 2011 (White, 
2010), a popular open source implementation of Google’s 
MapReduce framework, already have begun to promote using 
their frameworks in the cloud (White, 2010) Only recently, 
Amazon has integrated Hadoop as one of its core 
infrastructure services . However, instead of embracing its 
dynamic resource allocation, current data processing 
frameworks rather expect the cloud to imitate the static nature 
of the cluster environments (Dornemann et al., 2009) they 
were originally designed for, e.g., at the moment the types 
and number of VMs allocated at the beginning of a compute 
job cannot be changed in the course of processing, although 
the tasks the job consists of completely different demands on 
the environment. As a result, rented resources may be 
inadequate for big parts of the processing job, which may 
lower the overall processing performance and increase the 
cost. One of an IaaS cloud’s key feature is the provisioning of 
compute resources on demand. The computer resources 
available in the cloud are highly dynamic and possibly 
heterogeneous. Nephele is the first data processing 
framework to explicitly exploit the dynamic resource 
allocation offered by today’s IaaS clouds for both task 
scheduling and execution. Particular tasks of a processing a 
job can be assigned to different types of virtual machines 
which are automatically instantiated and terminated during 
the job execution. Nephele is the first data processing 
framework to explicitly exploit the dynamic resource 
allocation offered by today’s IaaS clouds for both, task 
scheduling and execution. Particular tasks of a processing job 
can be assigned to different types of virtual machines which 
are automatically instantiated and terminated during the job 
execution. While there exist different interpretations and 
views on cloud computing (Armbrust et al., 2009) it is less 
disputable that being able to effectively exploit the computing 
resources in the clouds to provide computing service at 
different quality levels is essential to the success of cloud 
computing. For real-time applications and services, the 
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timeliness is a major criterion in judging the quality of 
service. Due to the nature of real- time applications over the 
Internet, the timeliness here refers to more than the deadline 
guarantee as that for hard real-time systems. In this regard, an 
important performance metric for cloud computing can thus 
be the sum of certain value or utility that is accrued by 
processing all real-time service requests. To improve the 
performance of cloud computing, one approach is to employ 
the traditional Utility Accrual (UA) approach first proposed 
to associate each task with a Time Utility Function (TUF), 
which indicates the task’s importance. Specifically, the TUF 
describes the value or utility accrued by a system at the time 
when a task is completed (Li et al., 2006). Based on this 
model, there have been extensive research results published 
on the topic of UA scheduling. While Jensen’s definition of 
TUF allows the semantics of soft time constraints to be more 
precisely specified, all these variations of UA-aware 
scheduling algorithms imply that utility is accrued only when 
a task is successfully completed and the aborted tasks neither 
increase nor decrease the accrued value or utility of the 
system. We believe that, to improve the performance of cloud 
computing, it is important to not only measure the profit 
when completing a job in time, but also account for the 
penalty when a job is aborted or discarded. Note that, before 
a task is aborted or discarded, it consumes system sources 
including network bandwidth, storage space and processing 
power and thus can directly or indirectly affect the system 
performance. This is especially true for cloud computing in 
considering the large possibility of migration of a task within 
the clouds for reasons such as the economy considerations 
(Casati and Shan, 2001). If a job is deemed to miss its 
deadline with no positive semantic gain, a better choice 
should be one that can detect it and discard it as soon as 
possible. Recently, (Yu et al., 2010) proposed a task model 
that considers both the profit and penalty that a system may 
incur when executing a task. According to this model, a task 
is associated with two different TUFs, a profit TUF and a 
penalty TUF. The system takes a profit (determined by its 
profit TUF) if the task completes by its deadline and suffers a 
penalty (determined by its penalty TUF), if it misses its 
deadline or is dropped before its deadline. It is tempting to 
use negative values for the penalties and thus combine both 
TUFs into one single TUF. However, a task can be completed 
or aborted and hence can produce either a profit value or a 
penalty value. Mathematically, if there exists such a single 
function, it would imply that a single value in its domain was 
mapped to two values in its range, violating that it is a 
function. Therefore, one utility function cannot accurately 
represent both the profit and penalty information when 
executing a task. There are also some other penalty related 
models proposed in the literature. For example, studied the 
on-line scheduling problem when penalties have to be paid 
for rejected jobs. This model, however, does not account for 
the penalty to drop the task before its deadline. However 
Nephele does not consider resource overload or 
underutilization during the job execution automatically. In 
this study, a novel Turnaround time utility algorithm is 

proposed for scheduling the real-time cloud computing 
services. The most unique characteristics of this approach is 
that, different from traditional utility accrual approach that 
works under one single Time Utility Function (TUF), which 
have two different functions called a Gain and a loss 
Functions associated with each task at the same time, to 
model the real-time applications for cloud computing. To 
compare the performance of cloud computing, the traditional 
Utility approach is deployed in both Non-Preemptive and 
Preemptive scheduling This study includes further details on 
scheduling strategies and extended experimental results. The 
study is structured as follows: First it starts with describing 
the basic concept of cloud and present the architecture of the 
Nephele and outline how jobs can be described and executed 
in the cloud. Followed by our scheduling approach in 
explained in detail. Then we present the experiment setup 
used for the evaluation and discuss the results. Finally, we 
conclude the study. 
 

II. SCHEDULING AND LOAD-BALANCING 
A task is a (sequential) activity that uses a set of inputs to 
produce a set of outputs. Processes in fixed set are statically 
assigned to processors, either at compile-time or at start-up 
(i.e., partitioning) avoids overhead of load balancing using 
these load-balancing algorithms. The Grid computing 
algorithms can be broadly categorized as centralized or 
decentralized, dynamic or static or the hybrid policies in 
latest trend. A centralized load balancing approach can 
support larger system. Hadoop system takes the centralized 
scheduler architecture. In static load balancing, all 
information is known in advance and tasks are allocated 
according to the prior knowledge and will not be affected by 
the state of the system. Dynamic load-balancing mechanism 
has to allocate tasks to the processors dynamically as they 
arrive. Redistribution of tasks has to take place when some 
processors become overloaded (Zaharia et al., 2009). In cloud 
computing, each applications of users will run on a virtual 
operating systems, the cloud systems distributed resources 
among these virtual systems. Every application is completely 
different and is independent and has no link between each 
other whatsoever, For example, some require more CPU time 
to compute complex task and some others may need more 
memory to store data. Resources are sacrificed on activities 
performed on each individual unit of service. 

 
Fig. Nephele’s Architecture 
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In order to measure direct costs of applications, every 
individual use of resources (like CPU cost, memory cost, I/O 
cost) must be measured. When the direct data of each 
individual resources cost has been measured, more accurate 
cost and profit analysis. 
 
Overview of Nephele architecture: Nephele is a new data 
processing framework (Warneke and Kao, 2009; Ravindran 
et al., 2005) for cloud environment that takes up many ideas 
of previous processing frameworks but refines them to better 
match the dynamic and opaque nature of a cloud. Nephele’s 
architecture follows a classic master worker pattern as 
illustrated in Fig. Before submitting a Nephele compute job, a 
user must start a VM in the cloud which runs the so called 
Job Manager (JM). The Job Manager which receives the 
client’s jobs, is responsible for scheduling them and 
coordinates their execution. It is capable of communicating 
with the interface the cloud operator provides to control the 
instantiation of VMs. We call this interface the Cloud 
Controller. By means of the Cloud Controller the Job 
Manager can allocate or De-allocate VMs according to the 
current job execution phase. We will comply with common 
Cloud computing terminology and refer to these VMs as 
instances for the remainder of this study. The term instance 
type will be used to differentiate between VMs with different 
hardware characteristics. For example, the instance type 
“m1.small” could denote VMs with one CPU core, one GB of 
RAM and a 128 GB disk while the instance type “c1.xlarge” 
could refer to machines with 8 CPU cores, 18 GB RAM and a 
512 GB disk. The actual execution of tasks which a Nephele 
job consists of is carried out by a set of instances. Each 
instance runs a so-called Task Manager (TM). A Task 
Manager receives one or more tasks from the Job Manager at 
a time, executes them and after that informs the Job Manager 
about their completion or possible errors. Unless a job is 
submitted to the Job Manager, we expect the set of instances 
(and hence the set of Task Managers) to be empty. Upon job 
reception the Job Manager then decides, depending on the 
job’s particular tasks, how many and what type of instances 
the job should be executed on and when the respective 
instances must be allocated/de-allocated to ensure a 
continuous but cost-efficient processing. The newly allocated 
instances boot up with a previously compiled VM image. The 
image is configured to automatically start a Task Manager 
and register it with the Job Manager. Once all the necessary 
Task Managers have successfully contacted the Job Manager, 
it triggers the execution of the scheduled job. Initially, the 
VM images used to boot up the Task Managers are blank and 
do not contain any of the data the Nephele job is supposed to 
operate on. As a result, we expect the cloud to offer persistent 
storage (like, e.g., Amazon S3 (Amazon Web Services)). This 
persistent storage is supposed to store the job’s input data and 
eventually receive its output data. It must be accessible for 
both the Job Manager as well as for the set of Task Managers, 
even if they are connected by a private or virtual network. 
RR Scheduling: The RR scheduling method which is used to 
maximize the efficiency gain. Since the execution of a task 

may gain positive profit or suffer penalty and thus degrade 
the overall computing performance, judicious decisions must 
be made with regard to executing a task, dropping or aborting 
a task and when to drop or abort a task. The rationale of our 
approach is very intuitive, i.e. a task can be accepted and 
executed only when it is statistically promising to bring 
positive gain and discarded or aborted otherwise. Before we 
introduce the details of our scheduling approach, we first 
introduce two useful concepts, the expected gain utility and 
the critical point.  
Algorithm For RR scheduling: 
Consider K accepted Task in Ready Queue and the Current 
Time t. 
Parameters 
1: Accepted Task in the Queue Level. Let { t1 , t2 , ..., tk}Ar 
be the Arrival Time AT [T= 1 to K] 
2: Let Currently Running Task may be at T=0. Show the task 
with T and the Threshold Value Th AT = A0. 
3: Conditions The Current Job is in Critical, Then Abort the 
execution of T0 
4:Otherwise New Task enrolled in the end process. 
5: Calculation of efficiency of task and reschedule the task 
based on the Utility value and load into the ready Queue. 
6: Start the Execution from T1. The utility value is less then 
the Threshold value then remove the process from ready 
queue else the current process and start its execution 
The scheduling algorithm: Our scheduling algorithm works 
at scheduling points that include: the arrival of a new task, the 
completion of the current task and the critical point of the 
current task. 
 

III. RELATED WORK 
Dynamically switching between (constrained) local and 
(plentiful) remote resources, often referred as cyber-foraging, 
has shed light on many research work [3],  [9]. These 
approaches augment the capability of resource-constrained 
devices by offloading computing tasks to nearby computing 
resources, or surrogates. Nephele takes insights and 
inspirations from these previous systems, and shifts the focus 
from alleviating memory constraints and provides evaluation 
on hardware of the time, typically laptops, to more modern 
smartphones. Furthermore, it enhances computation 
performance by exploiting parallelism with multiple VM 
creation on elastic cloud resources and provides a convenient 
VM management framework for different QoS expectation 
[10]. The variation between the total utility and the 
experiment sets. From that we can know, how the values of 
total utility will increased to the corresponding values of 
experiment sets. And this graph shows that, preemptive 
results are having higher total utility than the RR and 
execution graph of the Nephele. 
 

IV. CONCLUSION 
In this paper we discussed the challenges and opportunities 
for efficient parallel data processing in cloud environments 
and presented the Internet has grown enormously, which has 
presented a great opportunity for providing real-time services 
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over the Internet. We have discussed the challenges and 
opportunities for efficient parallel data processing (Chaiken 
et al., 2008) in cloud environments and presented Nephele, 
the first data processing framework to exploit the dynamic 
resource provisioning offered by today’s IaaS clouds. We 
have described Nephele’s basic architecture and presented a 
performance comparison to the wellestablished data 
processing framework Hadoop. The performance evaluation 
gives a first impression on how the ability to assign specific 
virtual machine types to specific tasks of a processing job, as 
well as the possibility to automatically allocate/deallocate 
virtual machines in the course of a job execution, can help to 
improve the overall resource utilization and, consequently, 
reduce the processing cost. The on-line real-time service 
system should be compatible with preemption in respect that 
it is necessary and befitting for nowadays’ service requests. 
Our experimental results clearly show that our proposed RR 
scheduling algorithm is effective in this regard. In this study, 
we present a novel Turnaround time utility scheduling 
approach which focuses on both the high priority and the low 
priority takes that arrive for scheduling. This study can be 
viewed as the extended version of Nephele (Warneke and 
Kao, 2011). It is also a significant improvement compared to 
RR scheduling (Liu et al., 2010) in which, the RR approaches 
better than the preemptive counterpart. Our extensive 
experimental results clearly show that our proposed RR 
method can outperform the preemptive approach. 
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