
Resource Allocation Method using Scheduling
methods for Parallel Data Processing in Cloud

Sowmya Koneru1, V N Rajesh Uddandi1, Satheesh Kavuri2

1Depatment of Computer Science & Engineering,

Sri Sunflower College of Engineering & Technology,
Lankapally, Krishna Dist,

2Depatment of Computer Science & Engineering,
Dhanekula Institute of Engineering & Technology,

Vijayawada, Krishna Dist,

Abstract- Infrastructure as a Service (IaaS) clouds have emerged as a
promising new platform for massively parallel data processing. By
eliminating the need for large upfront capital expenses, operators of
IaaS clouds offer their customers the unprecedented possibility to
acquire access to a highly scalable pool of computing resources on a
short-term basis and enable them to execute data analysis applications
at a scale which has been traditionally reserved to large Internet
companies and research facilities. However, despite the growing
popularity of these kinds of distributed applications, the current parallel
data processing frameworks, which support the creation and execution
of large-scale data analysis jobs, still stem from the era of dedicated,
static compute clusters and have disregarded the particular
characteristics of IaaS platforms so far. Nephele is the first data
processing framework to explicitly exploit the dynamic resource
allocation offered by today’s IaaS clouds for both, task scheduling and
execution. Particular tasks of processing a job can be assigned to
different types of virtual machines which are automatically instantiated
and terminated during the job execution. However, the current
algorithms does not consider the resource overload or underutilization
during the job execution. In this paper, we have focused on increasing
the efficacy of the scheduling algorithm for the real time Cloud
Computing services. Our Algorithm utilizes the Turnaround time
Utility efficiently by differentiating it into a gain function and a loss
function for a single task. The algorithm also assigns high priority for
task of early completion and less priority for abortions issues of real
time tasks. The algorithm has been implemented on RR method. The
out performs existing utility based scheduling algorithms and also
compare its performance.
Keywords: Cloud computing, task scheduling, resource utilization, High-
Throughput Computing.

I. INTRODUCTION
Cloud computing refers to the idea of delivering dynamically-
scalable IT resources like computing power, storage or higher
level platforms and services on demand to external customers
over the Internet. The resources are rapidly provisioned and
released with minimal management effort or service provider
interaction, allowing the cloud customer to quickly grow or
shrink the rented infrastructure according to his requirements.
The Cloud computing has the potential to dramatically
change the landscape of the current IT industry (Armbrust et
al., 2009; Goldberg, 1989) For companies that only have to
process large amounts of data occasionally running their own
data center is obviously not an option. Instead, Cloud
computing has emerged as a promising approach to rent a
large IT infrastructure on a short-term pay-per-usage basis.
Operators of so-called IaaS clouds, let their customers
allocate, access and control a set of Virtual Machines (VMs)
which run inside their data centers and only charge them for

the period of time the machines are allocated. The VMs are
typically offered in different types, each type with its own
characteristics (number of CPU cores, amount of main
memory) and cost. Since the VM abstraction of IaaS clouds
fits the architectural paradigm assumed by the data
processing frameworks described above, projects like
Hadoop The Apache Software Foundation, 2011 (White,
2010), a popular open source implementation of Google’s
MapReduce framework, already have begun to promote using
their frameworks in the cloud (White, 2010) Only recently,
Amazon has integrated Hadoop as one of its core
infrastructure services . However, instead of embracing its
dynamic resource allocation, current data processing
frameworks rather expect the cloud to imitate the static nature
of the cluster environments (Dornemann et al., 2009) they
were originally designed for, e.g., at the moment the types
and number of VMs allocated at the beginning of a compute
job cannot be changed in the course of processing, although
the tasks the job consists of completely different demands on
the environment. As a result, rented resources may be
inadequate for big parts of the processing job, which may
lower the overall processing performance and increase the
cost. One of an IaaS cloud’s key feature is the provisioning of
compute resources on demand. The computer resources
available in the cloud are highly dynamic and possibly
heterogeneous. Nephele is the first data processing
framework to explicitly exploit the dynamic resource
allocation offered by today’s IaaS clouds for both task
scheduling and execution. Particular tasks of a processing a
job can be assigned to different types of virtual machines
which are automatically instantiated and terminated during
the job execution. Nephele is the first data processing
framework to explicitly exploit the dynamic resource
allocation offered by today’s IaaS clouds for both, task
scheduling and execution. Particular tasks of a processing job
can be assigned to different types of virtual machines which
are automatically instantiated and terminated during the job
execution. While there exist different interpretations and
views on cloud computing (Armbrust et al., 2009) it is less
disputable that being able to effectively exploit the computing
resources in the clouds to provide computing service at
different quality levels is essential to the success of cloud
computing. For real-time applications and services, the

Sowmya Koneru et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4625 - 4628

4625

timeliness is a major criterion in judging the quality of
service. Due to the nature of real- time applications over the
Internet, the timeliness here refers to more than the deadline
guarantee as that for hard real-time systems. In this regard, an
important performance metric for cloud computing can thus
be the sum of certain value or utility that is accrued by
processing all real-time service requests. To improve the
performance of cloud computing, one approach is to employ
the traditional Utility Accrual (UA) approach first proposed
to associate each task with a Time Utility Function (TUF),
which indicates the task’s importance. Specifically, the TUF
describes the value or utility accrued by a system at the time
when a task is completed (Li et al., 2006). Based on this
model, there have been extensive research results published
on the topic of UA scheduling. While Jensen’s definition of
TUF allows the semantics of soft time constraints to be more
precisely specified, all these variations of UA-aware
scheduling algorithms imply that utility is accrued only when
a task is successfully completed and the aborted tasks neither
increase nor decrease the accrued value or utility of the
system. We believe that, to improve the performance of cloud
computing, it is important to not only measure the profit
when completing a job in time, but also account for the
penalty when a job is aborted or discarded. Note that, before
a task is aborted or discarded, it consumes system sources
including network bandwidth, storage space and processing
power and thus can directly or indirectly affect the system
performance. This is especially true for cloud computing in
considering the large possibility of migration of a task within
the clouds for reasons such as the economy considerations
(Casati and Shan, 2001). If a job is deemed to miss its
deadline with no positive semantic gain, a better choice
should be one that can detect it and discard it as soon as
possible. Recently, (Yu et al., 2010) proposed a task model
that considers both the profit and penalty that a system may
incur when executing a task. According to this model, a task
is associated with two different TUFs, a profit TUF and a
penalty TUF. The system takes a profit (determined by its
profit TUF) if the task completes by its deadline and suffers a
penalty (determined by its penalty TUF), if it misses its
deadline or is dropped before its deadline. It is tempting to
use negative values for the penalties and thus combine both
TUFs into one single TUF. However, a task can be completed
or aborted and hence can produce either a profit value or a
penalty value. Mathematically, if there exists such a single
function, it would imply that a single value in its domain was
mapped to two values in its range, violating that it is a
function. Therefore, one utility function cannot accurately
represent both the profit and penalty information when
executing a task. There are also some other penalty related
models proposed in the literature. For example, studied the
on-line scheduling problem when penalties have to be paid
for rejected jobs. This model, however, does not account for
the penalty to drop the task before its deadline. However
Nephele does not consider resource overload or
underutilization during the job execution automatically. In
this study, a novel Turnaround time utility algorithm is

proposed for scheduling the real-time cloud computing
services. The most unique characteristics of this approach is
that, different from traditional utility accrual approach that
works under one single Time Utility Function (TUF), which
have two different functions called a Gain and a loss
Functions associated with each task at the same time, to
model the real-time applications for cloud computing. To
compare the performance of cloud computing, the traditional
Utility approach is deployed in both Non-Preemptive and
Preemptive scheduling This study includes further details on
scheduling strategies and extended experimental results. The
study is structured as follows: First it starts with describing
the basic concept of cloud and present the architecture of the
Nephele and outline how jobs can be described and executed
in the cloud. Followed by our scheduling approach in
explained in detail. Then we present the experiment setup
used for the evaluation and discuss the results. Finally, we
conclude the study.

II. SCHEDULING AND LOAD-BALANCING
A task is a (sequential) activity that uses a set of inputs to
produce a set of outputs. Processes in fixed set are statically
assigned to processors, either at compile-time or at start-up
(i.e., partitioning) avoids overhead of load balancing using
these load-balancing algorithms. The Grid computing
algorithms can be broadly categorized as centralized or
decentralized, dynamic or static or the hybrid policies in
latest trend. A centralized load balancing approach can
support larger system. Hadoop system takes the centralized
scheduler architecture. In static load balancing, all
information is known in advance and tasks are allocated
according to the prior knowledge and will not be affected by
the state of the system. Dynamic load-balancing mechanism
has to allocate tasks to the processors dynamically as they
arrive. Redistribution of tasks has to take place when some
processors become overloaded (Zaharia et al., 2009). In cloud
computing, each applications of users will run on a virtual
operating systems, the cloud systems distributed resources
among these virtual systems. Every application is completely
different and is independent and has no link between each
other whatsoever, For example, some require more CPU time
to compute complex task and some others may need more
memory to store data. Resources are sacrificed on activities
performed on each individual unit of service.

Fig. Nephele’s Architecture

Sowmya Koneru et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4625 - 4628

4626

In order to measure direct costs of applications, every
individual use of resources (like CPU cost, memory cost, I/O
cost) must be measured. When the direct data of each
individual resources cost has been measured, more accurate
cost and profit analysis.

Overview of Nephele architecture: Nephele is a new data
processing framework (Warneke and Kao, 2009; Ravindran
et al., 2005) for cloud environment that takes up many ideas
of previous processing frameworks but refines them to better
match the dynamic and opaque nature of a cloud. Nephele’s
architecture follows a classic master worker pattern as
illustrated in Fig. Before submitting a Nephele compute job, a
user must start a VM in the cloud which runs the so called
Job Manager (JM). The Job Manager which receives the
client’s jobs, is responsible for scheduling them and
coordinates their execution. It is capable of communicating
with the interface the cloud operator provides to control the
instantiation of VMs. We call this interface the Cloud
Controller. By means of the Cloud Controller the Job
Manager can allocate or De-allocate VMs according to the
current job execution phase. We will comply with common
Cloud computing terminology and refer to these VMs as
instances for the remainder of this study. The term instance
type will be used to differentiate between VMs with different
hardware characteristics. For example, the instance type
“m1.small” could denote VMs with one CPU core, one GB of
RAM and a 128 GB disk while the instance type “c1.xlarge”
could refer to machines with 8 CPU cores, 18 GB RAM and a
512 GB disk. The actual execution of tasks which a Nephele
job consists of is carried out by a set of instances. Each
instance runs a so-called Task Manager (TM). A Task
Manager receives one or more tasks from the Job Manager at
a time, executes them and after that informs the Job Manager
about their completion or possible errors. Unless a job is
submitted to the Job Manager, we expect the set of instances
(and hence the set of Task Managers) to be empty. Upon job
reception the Job Manager then decides, depending on the
job’s particular tasks, how many and what type of instances
the job should be executed on and when the respective
instances must be allocated/de-allocated to ensure a
continuous but cost-efficient processing. The newly allocated
instances boot up with a previously compiled VM image. The
image is configured to automatically start a Task Manager
and register it with the Job Manager. Once all the necessary
Task Managers have successfully contacted the Job Manager,
it triggers the execution of the scheduled job. Initially, the
VM images used to boot up the Task Managers are blank and
do not contain any of the data the Nephele job is supposed to
operate on. As a result, we expect the cloud to offer persistent
storage (like, e.g., Amazon S3 (Amazon Web Services)). This
persistent storage is supposed to store the job’s input data and
eventually receive its output data. It must be accessible for
both the Job Manager as well as for the set of Task Managers,
even if they are connected by a private or virtual network.
RR Scheduling: The RR scheduling method which is used to
maximize the efficiency gain. Since the execution of a task

may gain positive profit or suffer penalty and thus degrade
the overall computing performance, judicious decisions must
be made with regard to executing a task, dropping or aborting
a task and when to drop or abort a task. The rationale of our
approach is very intuitive, i.e. a task can be accepted and
executed only when it is statistically promising to bring
positive gain and discarded or aborted otherwise. Before we
introduce the details of our scheduling approach, we first
introduce two useful concepts, the expected gain utility and
the critical point.
Algorithm For RR scheduling:
Consider K accepted Task in Ready Queue and the Current
Time t.
Parameters
1: Accepted Task in the Queue Level. Let { t1 , t2 , ..., tk}Ar
be the Arrival Time AT [T= 1 to K]
2: Let Currently Running Task may be at T=0. Show the task
with T and the Threshold Value Th AT = A0.
3: Conditions The Current Job is in Critical, Then Abort the
execution of T0
4:Otherwise New Task enrolled in the end process.
5: Calculation of efficiency of task and reschedule the task
based on the Utility value and load into the ready Queue.
6: Start the Execution from T1. The utility value is less then
the Threshold value then remove the process from ready
queue else the current process and start its execution
The scheduling algorithm: Our scheduling algorithm works
at scheduling points that include: the arrival of a new task, the
completion of the current task and the critical point of the
current task.

III. RELATED WORK
Dynamically switching between (constrained) local and
(plentiful) remote resources, often referred as cyber-foraging,
has shed light on many research work [3], [9]. These
approaches augment the capability of resource-constrained
devices by offloading computing tasks to nearby computing
resources, or surrogates. Nephele takes insights and
inspirations from these previous systems, and shifts the focus
from alleviating memory constraints and provides evaluation
on hardware of the time, typically laptops, to more modern
smartphones. Furthermore, it enhances computation
performance by exploiting parallelism with multiple VM
creation on elastic cloud resources and provides a convenient
VM management framework for different QoS expectation
[10]. The variation between the total utility and the
experiment sets. From that we can know, how the values of
total utility will increased to the corresponding values of
experiment sets. And this graph shows that, preemptive
results are having higher total utility than the RR and
execution graph of the Nephele.

IV. CONCLUSION
In this paper we discussed the challenges and opportunities
for efficient parallel data processing in cloud environments
and presented the Internet has grown enormously, which has
presented a great opportunity for providing real-time services

Sowmya Koneru et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4625 - 4628

4627

over the Internet. We have discussed the challenges and
opportunities for efficient parallel data processing (Chaiken
et al., 2008) in cloud environments and presented Nephele,
the first data processing framework to exploit the dynamic
resource provisioning offered by today’s IaaS clouds. We
have described Nephele’s basic architecture and presented a
performance comparison to the wellestablished data
processing framework Hadoop. The performance evaluation
gives a first impression on how the ability to assign specific
virtual machine types to specific tasks of a processing job, as
well as the possibility to automatically allocate/deallocate
virtual machines in the course of a job execution, can help to
improve the overall resource utilization and, consequently,
reduce the processing cost. The on-line real-time service
system should be compatible with preemption in respect that
it is necessary and befitting for nowadays’ service requests.
Our experimental results clearly show that our proposed RR
scheduling algorithm is effective in this regard. In this study,
we present a novel Turnaround time utility scheduling
approach which focuses on both the high priority and the low
priority takes that arrive for scheduling. This study can be
viewed as the extended version of Nephele (Warneke and
Kao, 2011). It is also a significant improvement compared to
RR scheduling (Liu et al., 2010) in which, the RR approaches
better than the preemptive counterpart. Our extensive
experimental results clearly show that our proposed RR
method can outperform the preemptive approach.

REFERENCES
[1] T. Dornemann, E. Juhnke, and B. Freisleben. On-Demand Resource

Provisioning for BPEL Workflows Using Amazon’s Elastic Compute
Cloud. In CCGRID ’09: Proceedings of the 2009 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, pages
140–147, Washington, DC, USA, 2009. IEEE Computer Society.

[2] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure
Toolkit. Intl. Journal of Supercomputer Applications, 11(2):115–128,
1997.

[3] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor- G:
A Computation Management Agent for Multi-Institutional Grids.
Cluster Computing, 5(3):237–246, 2002.

[4] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: Distributed
Data-Parallel Programs from Sequential Building Blocks. In EuroSys
’07: Proceedings of the 2nd ACM SIGOPS/EuroSys European

Conference on Computer Systems 2007, pages 59–72, New York, NY,
USA, 2007. ACM.

[5] A. Kivity. kvm: the Linux Virtual Machine Monitor. In OLS ’07: The
2007 Ottawa Linux Symposium, pages 225–230, July 2007.

[6] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.
Youseff, and D. Zagorodnov. Eucalyptus: A Technical Report on an
Elastic Utility Computing Architecture Linking Your Programs to
Useful Systems. Technical report, University of California, Santa
Barbara, 2008.

[7] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin:
A Not-So-Foreign Language for Data Processing. In SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 1099–1110, New York, NY, USA, 2008.
ACM.

[8] O. O’Malley and A. C. Murthy. Winning a 60 Second Dash with a
Yellow Elephant. Technical report, Yahoo!, 2009.

[9] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data
processing on large clusters. Communications of the ACM, 51:107–113,
January 2008. [44] Ewa Deelman, Gurmeet Singh, Mei-Hui Su

[10] Jens Dittrich, Jorge-Arnulfo Quian´e-Ruiz, Alekh Jindal, Yagiz Kargin,
Vinay Setty, and J¨org Schad. Hadoop++: Making a yellow elephant
run like a cheetah (without it even noticing). Proc. of the VLDB
Endowment, 3:515–529, September 2010.

[11] Tim Dornemann, Ernst Juhnke, and Bernd Freisleben. On-demand
resource provisioning

for BPEL workflows using Amazon’s Elastic Compute Cloud. In Proc. Of
the 9th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing, CCGRID ’09, pages 140–147, Washington, DC,
USA, 2009. IEEE Computer Society.

[12] Alexei Drummond and Korbinian Strimmer. PAL: An object-oriented
programming library for molecular evolution and phylogenetics.
Bioinformatics, 17:662– 663, 2001.

[13] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-time (BVT)
scheduling: Supporting latency-sensitive threads in a general-purpose
scheduler. SIGOPS Operating Systems Review, 33:261–276, December
1999.

[14] Nick G. Duffield, Joseph Horowitz, Francesco Lo Presti, and Donald
Towsley. Multicast topology inference from end-to-end measurements.
Advances in Performance Analysis, 3(3):207–226, September 2000.

[15] Nick G. Duffield, Joseph Horowitz, Francesco Lo Presti, and Donald
Towsley. Multicast topology inference from measured end-to-end loss.
IEEE Transactions on Information Theory, 48(1):26 –45, January
2002.

[16] Nick G. Duffield, Francesco Lo Presti, Vern Paxson, and Donald
Towsley. Network loss tomography using striped unicast probes.
IEEE/ACM Transactions on Networking, 14:697–710, August 2006.

[17] Bin Fan, Wittawat Tantisiriroj, Lin Xiao, and Garth Gibson.
DiskReduce: RAID for data-intensive scalable computing. In Proc. of
the 4th Annual Workshop on Petascale Data Storage, PDSW ’09,
pages 6–10, New York, NY, USA, 2009. ACM.

Sowmya Koneru et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4625 - 4628

4628

